Andrew Naguib's Homepage
(آندرو نجيب؛ الصفحة الشخصية)
Table of Contents
Blogs/Resources/Articles
- Computability, Complexity and Constructivity in Analysis
- Philosophy of Mathematics
- settheory.net
- Life in Venn Diagrams!
- Why do math?
- Advice to a Young Mathematician
- George Berkeley's attack on Calculus (The Analyst)
- SMB's Webpage
- Nicolas Bourbaki (the “Strasbourg and Bourbaki” chapter in André Weil's biography explaining how Bourbaki came to existence is quite amusing)
- Bongard Problems
- Fold-and-Cut
- OEIS
- Mathematical Enchantments
- Computational Complexity
- Project Euler
- Ten Rules for Math Writing
- ProofWiki
- Living Proof
- PrimePages
- MSP
- Mathematical problems for the next century
- Top 10 Ideas in Statistics That Have Powered the AI Revolution
- The Hundred Greatest Theorems
- Mathematics Pronunciation Guide
- Terry Tao's Blog
- ترجمات بعض مواضيع الرياضيات من الأستاذ حمزة فوزي
- معجم مصطلحات الرياضيات
- Interactive Euclid's Elements
Programs/Jobs/Internships
Books
Examples to kindle your mathematics enthusiasm
- The following sets have equal cardinality \(|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}|\)
- Deciding whether a diophantine equation has solutions reduces to the halting problem.
- \(\sum_{n=1}^\infty \frac{1}{n}\) diverges, but \(\sum_{n=1}^\infty \frac{1}{n^2}\) converges.
- The triangle shaped by the North Pole as one of the vertices, together with a point on the equator, and a third quarter of the way around the equator from the first has three right angles! (the flatter it becomes, the closer the sum of the angles is to \(180^\circ\))
Optimization
Tricks
Dual problems
- LP
(P) LP-SEF: \(\min_x \langle c, x \rangle: A x = b, x \geq 0\) (D) LP-SEF: \(\max_y \langle b, y \rangle: ( A y + \lambda = c, \lambda \geq 0) \equiv Ay \leq c\)
- QP
- QCQP
- primal problem
\(\min \frac{1}{2} x^T P_0 x + c_0^T x : \frac{1}{2} x^T P_i x + c_i^T + d_i \leq 0; i \in \{1, \cdots, m \}, m \in \mathbb{N}\)
- dual problem (\(P\) invertible)
\(\max -(1/2) q(\lambda)^T P(\lambda)^{-1} q(\lambda) + r(\lambda) : \lambda \succeq 0\)
- dual problem (\(P\) not invertible)
\(\max_{\gamma, \lambda} - \gamma + d^T \lambda : \begin{pmatrix} P_0 + \sum_{i=1}^m \lambda_i P_i & c_0 + \sum_{i=1}^m \lambda_i c_i \\ c_0^T + \sum_{i=1}^m \lambda_i c_i^T & \gamma \end{pmatrix} \succeq 0\)
- primal problem
- SOCP
- SDP
- SCF
- primal problem
\(\min_x c^T x : A x = b; x \in K\)
\(\left(\text{SOCP: } K = C_2^{k_1} \times \cdots \times C_2^{k_n}; \text{SDP: }K = \mathbb{S}^n_+ \right)\) - dual problem
\(\max_{y} - b^T \nu : c - \lambda + A^T \nu = 0, \lambda \succeq_{K^\ast} 0 \equiv c - A^Ty \succeq_{K^\ast} 0\) or (\(y = -\nu\)) \(\max_{y} b^T y : c - A^T y \succeq_{K^\ast} 0\) (\(X \in \mathbb{S}^n_+\) can be rewritten \(X \in \mathbb{S}^n \wedge \lambda_{\max} (-X) \leq 0\))
- primal problem
Formulation
\[LP \subseteq QP \subseteq QCQP \subseteq SOCP \subseteq SDP\]
- QP \(\to\) LP: \(H = 0\).
- QCQP \(\to\) QP: \(P_i = 0\)
- QCQP \(\to\) SOCP
\(\left\lVert \begin{pmatrix} \frac{1}{\sqrt{2}} G x \\ d - \langle p, x \rangle \\ \frac{1}{2} \end{pmatrix} \right\lVert \leq d - \langle p, x \rangle+ \frac{1}{2}\),
e.g., \(||u - u_0||^2 \leq s \Leftrightarrow \left\lVert\begin{pmatrix} u - u_0 \\ s \\ 1/2 \end{pmatrix}\right\lVert \leq s + 1/2\)
- SOCP \(\to\) SDP
\(||x|| \leq t \Leftrightarrow \begin{pmatrix} t & x^T \\ x & t I_n \end{pmatrix} \succeq 0\)
Game Theory
History
2005-Present
- 2007: “The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2007 was awarded jointly to Leonid Hurwicz, Eric S. Maskin and Roger B. Myerson ‘for having laid the foundations of mechanism design theory’.”
- 2012: “The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012 was awarded jointly to Alvin E. Roth and Lloyd S. Shapley ‘for the theory of stable allocations and the practice of market design’.”
Criticisms
Combinatorial Game Theory
Why Mathematica?
♚
I maintain this webpage using Org mode version 9.7.1 and magit version 20241126.1900 (commit id #1ba074f) on Emacs 29 and gnu/linux