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Preliminaries

combinatorial optimization

Let 𝑥 ∈ ℝ𝑛, 𝑓 , 𝑔, ℎ ∶ ℝ𝑛 → ℝ. An optimization problem has the
following form:

minimize𝑥 𝑓 (𝑥)

subject to 𝑔𝑖(𝑥) ≤ 0 𝑖 = 1, ⋯ , 𝑚,
ℎ𝑗(𝑥) = 0 𝑗 = 1, ⋯ , 𝑝

(1)

if, 𝑓𝑖(𝑥) is strictly convex, then a unique global optimum exist

if 𝑓𝑖(𝑥), 𝑔𝑖(𝑥) are restricted to be convex functions and ℎ𝑗(𝑥) to be an
affineone, thenwehavewhatwe call a convex optimization problem

if 𝑥 is a discrete variable and is an enumeration, a combination, or
a permutation of a set of elements, then we have a combinatorial
optimization problem
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integer program

Let 𝑐, 𝑙, 𝑢 ∈ ℝ𝑛, 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚, 𝐼 ⊆ {1, 2, ⋯ , 𝑛}, and 𝑙, 𝑢 ∈ ℝ𝑛.
An IP can be defined as follows:

minimize𝑥 𝑐𝑇𝑥 (2a)

subject to 𝐴𝑥 ≤ 𝑏, (2b)
𝑙 ≤ 𝑥 ≤ 𝑢, (2c)
𝑥𝑖 ∈ ℤ 𝑖 ∈ 𝐼. (2d)

A feasible assignment 𝑥𝑖 = 𝑧𝑖 would satisfy the above constraints
(2b)-(2d), and an optimal one 𝑧⋆, called the minimizer, is both feasi-
ble and minimizes the objective (2a). For a shorthand notation, let 𝛿𝑖
refer to 𝐴𝑖𝑥𝑖 ≤ 𝑏𝑖 in (2b).

𝑥1

𝑥2 (2c)

𝛿1 (2b)
𝛿2 (2b)

(2d)

(3a)

(2c)

Figure 1: An IP example consist-
ing of two variables and three con-
straints.

Integer program relaxation

The linear programming relaxation (LP-relaxation) for the IP defined above would be:

minimize𝑥 𝑐𝑇𝑥 (3a)

subject to 𝐴𝑥 ≤ 𝑏, (3b)
𝑙 ≤ 𝑥 ≤ 𝑢. (3c)

That is, the integrality constraints are relaxed, which also makes the problem convex. Clearly, the optimal solution to (3a) is also optimal to
the original problem (2a) if and only if it satisfies (2d).

Figure 1 is an example of an integer program consisting of two variables, {𝑥1, 𝑥2}, and two constraints, {𝛿1, 𝛿2}. The gray shading repre-
sents the relaxed problem (3a), where the solid grid lines are the integrality constraints (2d), and the dashed lines , (2c), are the box constraints.
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primal-dual method

The quality of each feasible solution found to (2a) is assessed using the primal-dual method. The primal (lower) bounds 𝑝⋆ are provided by
feasible solutions, and the dual (upper) bounds 𝑑⋆ by relaxation or duality. The Lagrangian dual problem [1] to (3a) is:

maximize
𝜆

− 𝑏𝑇𝜆 (4a)

subject to 𝐴𝑇𝜆 + 𝑐 ≥ 0, (4b)

where 𝜆 is the Lagrange multiplier or the dual variable for the inequality constraints (3b). The dual problem acts as a certificate on the limit
of the performance, i.e., the upper bound that declares optimality of 𝑝⋆. The duality gap 𝑓 is given by 𝑝⋆ − 𝑑⋆. A gap 𝑓 > 0 or 𝑓 = 0 indicates
a weak- or strong-duality, respectively. We define the relative gap to be:

Δ𝑓 = |𝑝⋆ − 𝑑⋆|
𝑚𝑖𝑛{|𝑝⋆|, |𝑑⋆|} .

branch-and-bound

The two building blocks in the algorithm are:

• branching: the problem is divided into several smaller and less
constrained ones

• bounding: selects which subproblems to solve next.

strong branching (SB)

carefully branches the tree
to guarantee the smallest
B&B tree size by perform-
ing a one-step look-ahead
before deciding to branch.
The solver starts by choos-
ing a set of integer variables,
𝑆, that are fractional in the
LP-relaxation (when𝑆 repre-
sents all of the integer vari-
ables, it is the Full Strong
Branching policy).

reliable pseudo-cost (RPC)

assigns an estimated cost to
each variable based on the
results of the previous sub-
problems, and occasionally
uses SB on the unreliable
pseudo-costs according to
some predefined reliability
constant.

𝛿𝑖

Figure 2: The arcs on the dashed branches are equivalent to the 𝛿𝑖, The
bars hovering over each node is a visual representation of the upper
bound.

4



capacitated vehicle routing problem (CVRP)

(a) (b)

Figure 3: A CVRP example with 𝑛 = 40 and 𝑘 = 5. Given the dispersed
points shown in (a), CVRP asks to find the routes presented in (b).

The goal is to construct a tour for each vehicle where

(i) Each customer is visited once and by a single vehicle;

(ii) The demand served by vehicledoes not exceed the capacity;

(iii) Each tour starts and finishes at the depot (to eliminate sub-tours);

(iv) The tours jointly minimize the cost and serve the total demand.

The corresponding integer program is:

minimize𝑥 ∑
(𝑖,𝑗)∈ ⃗𝐴

𝑐𝑖𝑗𝑥𝑖𝑗 (5a)

subject to ∑
𝑗∈deg+(𝑖)

𝑥𝑖𝑗 = 1 ∀ 𝑖 ∈ 𝑁, (5b)

∑
𝑖∈deg−(𝑖)

𝑥𝑖𝑗 = 1 ∀ 𝑗 ∈ 𝑁, (5c)

∑
𝑗∈deg+(0)

𝑥0𝑗 = 𝑘, (5d)

∑
𝑗∈deg−(0)

𝑥0𝑗 = 𝑘, (5e)

𝑢𝑖 − 𝑢𝑗 + 𝑄𝑥𝑖𝑗 ≤ 𝑄 − 𝑞𝑗 ∀ (𝑖, 𝑗) ∈ ⃗𝑇 , (5f)

𝑞𝑖 ≤ 𝑢𝑖 ≤ 𝑄 ∀ 𝑖 ∈ 𝑁, (5g)

𝑥𝑖𝑗 ∈ {0, 1} ∀ (𝑖, 𝑗) ∈ ⃗𝐴, (5h)

where 𝑥 ∈ ℤ|𝑉 |×|𝑉 | and 𝑢 ∈ ℝ| ⃗𝑇 | are the decision variables rep-
resenting the tours and a constructed tour ⃗𝑇. Both (5b) and (5c)
ensure (i). The sub-tour elimination and capacity constraints
(SEC) (ii) and (iii) are guaranteed by (5f) and (5g), which are the
Miller-Tucker-Zemlin (MTZ)-formulation [2]. The integrality con-
straints are enforced by (5h).
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bin packing problem (BPP)

A formulation of the IP for BPP in terms of CVRPa can be written by
removing constraints (5f)-(5g) and through a simple algebraic manipu-
lation to minimize the number of vehicles, referred to as bins in this
context, in lieu of (5a). This is achieved by expanding the value 𝑘 to the
bins variable 𝐾 = {1, 2, ⋯ , 𝑘}, and conditioning that the demands 𝑞𝑗
for 𝑗 ∈ 𝑁, represented as weighted items, are all distributed across the
available bins without exceeding the bin capacity 𝑄.

aBoth problems are NP-hard

minimize
𝑘

𝑘
∑

𝑖
𝑘𝑖 (6a)

subject to
𝑘

∑
𝑖

𝑞𝑗𝑥𝑖𝑗 ≤ 𝑄𝑘𝑖 ∀ 𝑗 ∈ 𝑁, (6b)

𝑘
∑

𝑖
𝑥𝑖𝑗 = 1 ∀ 𝑗 ∈ 𝑁, (6c)

𝑘𝑖 ∈ {0, 1} ∀ 𝑖 ∈ 𝐾, (6d)
𝑥𝑖𝑗 ∈ {0, 1} ∀ 𝑖 ∈ 𝐾, 𝑗 ∈ 𝑁. (6e)

The decision variable 𝑥 represents the allocation of customers’ de-
mands or items to vehicles or bins, with each entry 𝑥𝑖,𝑗 representing
the assignment of the 𝑖-th vehicle or bin to the 𝑗-th demand or item.
We reformat equation (6b) as ∑𝑘

𝑖 𝑞𝑗𝑥𝑖𝑗 − 𝑄𝑘𝑖 ≤ 0 to match the format
required by a SCIP constraint. Using this integer program, we can de-
termine the value of 𝑘min, which is the minimum between the optimal

solution for (6a) and the strict lower bound obtained by ⌈∑𝑛
𝑖 𝑞𝑖
𝑄 ⌉. Equa-

tion (6b) represents the bin capacity constraint, (6c) ensures that each
item is assigned to a single bin, and (6d)-(6e) are the integrality con-
straints.

mathematical solvers

A piece of software that implements several algorithms (either heuristics or optimality) to solve linear, quadratic, or nonlinear optimization
problems. Examples include:

• , SCIP[3] (the one we use as an evaluation environment);

• , Gurobi;

• , CPLEX;

• , LocalSolver.
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Method

• We model each branching step, as described in Section , using a bipartite node with two disjoint sets. These sets are denoted as 𝑥 =
{𝑥1, 𝑥2, ⋯ , 𝑥𝑛} and 𝛿 = {𝛿1, 𝛿2, ⋯ , 𝛿𝑚} (see Figure 4), representing the variables and constraints in (2b), respectively.

• The sensitivity of a variable to the objective function (either (5a) for the CVRP or (6a) for the BPP) is represented by an edge weight, or
coefficient, 𝑎𝑖𝑗 ∈ 𝐴, where 𝑖 belongs to Set 𝑥 and 𝑗 belongs to Set 𝛿. Each element in either set has a feature vector that describes its
attributes during the solving process1.

graph convolutional neural network

minimize𝑥 𝑐1𝑥1 + 𝑐2𝑥2 + ⋯ + 𝑐𝑛𝑥𝑛

subject to 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑚𝑥𝑛 ≤ 𝑏1
⋮ ⋱ ⋮ ⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2+ ⋯ + 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚

𝑥1

𝑐1

𝑥2

𝑐2

⋯ 𝑥𝑛

𝑐𝑛

𝛿1

𝑏1

𝛿2

𝑏2

⋯ 𝛿𝑚

𝑏𝑚

𝑎11 𝑎𝑚𝑛

Figure 4: The corresponding integer program
would then be minimize∘ ∑ ∘; subject to ⋄

GraphSAGE

𝑥1

𝑐1

𝑥2

𝑐2

⋯ 𝑥𝑛

𝑐𝑛

𝛿1

𝑏1

𝛿2

𝑏2

⋯ 𝛿𝑚

𝑏𝑚

𝑎11 𝑎𝑚𝑛

Figure 5: GraphSAGE accumulates infor-
mation from a selection of neighboring
nodes, with more distant nodes becom-
ing increasingly influential in the aggre-
gated information as the process contin-
ues.

graph attention neural network

⋯

𝑥1

𝑐1

𝑥2

𝑐2

⋯ 𝑥𝑛

𝑐𝑛

𝛿1

𝑏1

𝛿2

𝑏2

⋯ 𝛿𝑚

𝑏𝑚

𝑎11 𝑎𝑚𝑛

Figure 6: GAT assigns attention scores to
the relationships between each node and
its neighboring nodes. This is an example
of a three-head attention mechanism.

1For example, the feature vector for a variable 𝑖 ∈ 𝑥 may include the objective value, variable type (such as binary, integer, or continuous), and lower and upper bounds.
Similarly, the feature vector for a constraint 𝑗 ∈ 𝛿 may include the tightness, dual problem solution value (4a), scaled age, and bias. In total, there are 19 features collected
for each variable and 5 for each constraint.
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Evaluation

(a) instance topology

(b)GraphSAGE after 1 hour. (c)GraphSAGE after 8 hours

(d) SCIPSB after 1 hour (e) SCIPSB after 8 hours

(f) optimal solution, 𝑧⋆

Figure 7: Example on solving the CVRP instance M-n151-k12 using both GraphSAGE and SCIP with allowed runtime of 8 hours.

criteria

• The SB decision samples were drawn using École for the CVRP and BPP integer programs.

– The CVRP training and evaluation instances were drawn from the 12 benchmark sets in the CVRPLIB [4], with six instances from sets
A and P [5] for training and eight instances from sets P, B, and M for evaluation.

– The BPP training instances were taken from [6], specifically sets U and T, with two instances for training (u100_00 and u80_00) and
five instances for evaluation (t249_00, t120_00, t60_00, u250_00, and u500_00)

• We evaluated five branching strategies: SB, RPC (which are the inherently built branching strategies), GCNN, GraphSAGE, and GAT
(which are the learned strategies) using SCIP with the time limit set to 1 hour, 2 hours, 4 hours, or 8 hours.

8



visualization

https://isotlaboratory.github.com/ml4vrp
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results

The following figures represent 144 (CVRP) + 120 (BPP) experiments out of the 800 presented in the manuscript.
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Figure 10: The performance of the three BPP classifiers against SCIPSB calculated by (??), across the training instances.
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Figure 11: The performance of the three BPP classifiers against SCIPRPC calculated by (??), across the training instances.
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Figure 12: The average performance of each classifier across the CVRP evaluation instances; (a) compares against SCIPSB and (b) compares
against SCIPRPC.
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Figure 13: The performance of each classifier averaged by both of the CVRP training and evaluation instances against (a) SCIPSB and (b)
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Figure 15: The performance of each classifier averaged by both of the BPP training and evaluation instances against (a) SCIPSB and (b) SCIPRPC.
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Figure 14: The average performance of each classifier across the BPP evaluation instances; (a) compares against SCIPSB and (b) compares
against SCIPRPC.
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findings

• In Figure 8, which compares against the performance of SCIPSB, the trained classifiers perform better than SCIPSB in the majority of the
experiments

• SCIPSB was unable to find a feasible solution within the first hour for Instance P-n76-k5 or within the first, second, and fourth hour for
Instance B-n57-k7. This trend continues for Instance B-n64-k9 across all time windows.

• the three classifiers are able to find significantly lower gaps on Instance M-n151-k12 even when given the maximum time allowance to
SCIPSB (eight hours).

• the GED and ΔTSE𝑚
SCIPSB

showed fluctuations with no apparent correlation to the classifiers performance, making it challenging to affirm
generalization capabilities.

• When comparing the performance of the individual classifiers, GCNN reaches the lowest gap on four out of eight instances, although
the surplus is modest when compared to GraphSAGE.

• GAT is able to outperform the other two classifiers at the eighth hour;

• Using RPC clearly ameliorate SCIP’s performance. Nonetheless, at least one of the classifiers achieves equivalent performance or with
slight improvement/decline in at least four hours less.

• The fourth bar depicts the performance of the classifiers against a time allowance of eightfold increase for SCIP𝑠. The potential
gains when using either branching strategies are minute, and in some cases, there may be a net loss,

• On average, the classifiers are consistently able to find lower gaps than SCIPSB in significantly less time.
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Discussion

While the results were impressive, there are some challenges that may arise in larger instances with hundreds of thousands of customers.
These include:

• difficulties in generating decision samples for the SB to train a custom classifier;

• limitations in the current approach’s ability to generate more efficient strategies than those they were trained on.

We suggest two directions for these two problems:

• The first option is the UG [7], which is a parallelized implementation of SCIP, UG is a promising direction for enriching our sampling
tools.

• The second method, which is our current focus, is formulating the CVRP as a zero-sum game [8, 9] between two reinforcement-learning
agents, with the reward set to maximizing set negative relative primal-dual gap until a Nash equilibrium is approximated.
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Thank you.
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